Yet another lagging, coincident and leading index for the colombian economy.

Carlos Alberto CASTRO IRAGORRI

Documento 233
9 de Septiembre de 2003.
Yet another Lagging, Coincident and Leading Index for the Colombian Economy1

Carlos Alberto Castro Iragorri
cCASTRO@DNP.GOV.CO
August 2003

Abstract
This paper sums up the results of an ongoing research on the construction of indexes for Colombian economic activity and the characteristics of the business cycle. The author uses the statistical framework known as the generalized dynamic factor model (Forni, Lippi, Hallin, Reichlin, 2000) to build a lagging, coincident, and leading quarterly index for Colombian economic activity.

JEL classification: C53, C82, E32.
Keywords: generalized dynamic factor model, coincident indexes, leading indexes.

1) Introduction

Initial interest on coincident and leading indicators began with the methods suggested by Burns and Mitchell (1946). Their method basically consisted in selecting economic time series which showed clear turning points contemporary or in advanced of the “reference cycle”. The series are standardized and averaged to provide a composite cyclic indicator. However, much critique aroused on the lack of statistical criteria used on the definition of the global state of the economy and on the optimality of the weighting scheme used to construct the leading indicators, by Stock and Watson (1989 and 1991) and Emerson and Hendry (1996). From this criticism the use and subsequent publication of coincident and leading indicators for the United States and the U.K.2, by national statistical bureaus, cease in the middle of the nineties. In spite of the criticism there is still somewhat of an academic interest in these measurements of economic activity. The OECD still produces leading

1 The opinions expressed here are those of the author and not necessarily those of the Departamento Nacional de Planeación. I express my thanks to Jesus Otero, Gabriel Piraquive and Manuel Ramirez for helpful comments and suggestions. Any remaining errors are my own.
2 In light of much criticism, the Office for National Statistics stopped publishing these indicators in 1996; however the publication was taken up by a private agency. At approximately the same time, the United States Bureau of Census stopped publishing these indicators, but they were taken up by the Conference Board.
indicators for most of its members following the traditional method. There has also been an important development of techniques based on econometric and time series analysis.

Stock and Watson (1989 and 1991), (SW henceforth) have used a state space model with observable and predetermined coincident and leading variables. The main idea behind their methodology is to obtain an unobservable process as the coincident index and use the 6-month forecast of this unobserved factor, as the leading index, obtained from a modified vector autoregressive system of this factor and a set of leading variables.

Another approach is the EuroCoin™, which is a coincident indicator of the euro area business cycle. This index is estimated using a set of monthly statistics of the euro area (951 series). This method builds on the previous research on coincident and leading indexes by Forni, Hallin, Lippi and Reichlin (1999, 2000, 2001, and 2003) (FHLR henceforth). The statistical model used is based on the generalization of the dynamic factor model and will be explained in greater detail in section 2.

In this paper the methodology and software developed by FHLR is used to construct a quarterly self-contained system of coincident and leading indicators for the Colombian economy. In section 2 the statistical model and theoretical aspects of it are described; in section 3 an overview of the estimation procedure is presented; in section 4 the data used is described as well as the calibration of the statistical model for the Colombian economy; in section 5 the results obtained from the empirical application to the Colombian economy are presented. Finally the last section presents the conclusions, strengths and weaknesses of the procedure.

3 Give or take some revisions, modifications and fine tuning of the methods. For more information see www.oecd.org/std/cli.
4 The EuroCoin™ is published monthly by the CEPR (Center for Economic Policy Research).
2) Statistical Model

The essence of the method in FHLR is a factor model\(^5\), where the dynamics (covariance) of a panel of macroeconomic variables can be described by a small number of commonalities in the set. Therefore each variable can be expressed as the sum of a common component (shared accordingly with the other variables in the panel) and an idiosyncratic (orthogonal) component. The SW approach also originates from a factor model, but the classification of the variables as coincident is performed \textit{a-priori}. As stated by FHLR (1999) in their procedure and analogous to the NBER averaging methodology "the first step is to eliminate from each series in the panel, that part of the dynamics which is poorly correlated with the rest of the economy and hence considered as idiosyncratic. Then, in a second step we select coincident and leading indicators by analyzing the phase shifts between these ‘cleaned’ time series. Finally, we aggregate coincident and leading variables into coincident and leading indexes and establish turning points. A major novelty of our methodology is that these steps are not conceptually disjoint operations, but are all consistently nested within a unified theoretical setting"\(^6\). The steps of the procedure will be further explained in section 3.

The following paragraphs will summarize the construction and assumptions of the FHLR model, naturally a more comprehensive treatment of the model can be found in FHLR (1999, 2000, 2001, and 2003).

a. Identifying the common components

Define \(x_i = (x_{i1}, \ldots, x_{in})'\) as the panel of \(n\) macroeconomic series suitably transformed\(^7\). Since the goal is to summarize in a small number of indexes the commonality of the variables in the panel we look for \(q\) processes \(z_{ht} = h=1, \ldots, q\) that satisfy the following conditions:

i. \(z_{ht}\) is a linear combination of the leads and lags of the variables of the panel:

\[
z_{ht} = p_h(L)x_i, \quad h=1, \ldots, q
\]

\(^5\) See Harman (1967) for an introduction to factor analysis.
\(^6\) FHLR (1999), pg 2.
\(^7\) Guaranteeing stationarity for all the series and standardized so the different units of each series do not overshadow the explained variance
ii. \(z_{ht} \) and \(z_{kt} \) are mutually orthogonal at any lead and lag \(h \neq k \) and the filters \(p_h(L) \) are normalized such that:
\[
p_h(L)p_k(F)' = 0, \quad \text{For } h \neq k
\]
\[
p_h(L)p_h(F)' = 1, \quad 8
\]

iii. the filters \(p_h(L) \) and associated processes \(z_{ht}, h=1,\ldots,q \) are such that the sum of the explained variance is maximized:
\[
\sum_{j=1}^n \text{var}(\gamma_j q)
\]
\(\gamma_j q = (\gamma_1 q, \ldots, \gamma_q q)' \) is the projection of \(x_t \) on the past, present and future of \(z^q_t = (z^1 t, \ldots, z^q t)' \) given the following decomposition of \(x_t \) on the above mentioned aggregates (hence \(\gamma_j q \) for \(i=1,\ldots,n \) is the commonality of each series in the panel).

\[
x_t = \gamma^q_t + \zeta^q_t = C^q(L)z^q_t + \zeta^q_t = K^q(L)x_t + \zeta^q_t \quad (1)
\]

Where the residual vector is \(\zeta^q_t \) and \(C^q(L) \) and \(K^q(L) \) are the following filters:

\[
C^q(L) = (p_1(F)' \ldots p_q(F)')
\]
\[
K^q(L) = C^q(L)C^q(F)' = p_1(F)p_1(L)' + \ldots + p_q(F)p_q(L)' \quad 9
\]

The processes \(z_{ht}, \ldots, z_{kt} \) that satisfy requirements, i), ii) and iii) are called the dynamic principal components of \(x_t \). The dynamic principal components are related to the eigenvalues and eigenvectors of the spectral density matrix of \(x_t \), akin to the static case where they are related to the eigenvalues and eigenvectors of the variance-covariance matrix. The main difference between the dynamic and static case is that the relationship between the principal components (in this case \(z_{ht} \) for \(h=1,\ldots,q \)) and the original series (in

8 Where \(F = L^{-1} \), \(L \) and \(F \) as usual are the backward and forward shift operators, respectively.

9 This automatic re-alignment of the variables exploits completely the information of the panel not only the information of the coincident variables, but it also includes the leading and lagging ones in order to identify more thoroughly the common component.
this case the panel \(x_n \) are in terms of all the values of \(z_{ht} \) and \(x_n \), at different times rather than a single \(z_{ht} \) and \(x_n \)

The filters are derived from the eigenvectors \(p_h(e^{-i\theta}) \), corresponding to the \(h \)th eigenvalue \(\lambda_h(\theta) \) in descending order, from the spectral density matrix \(\Sigma(\theta) \), at frequencies \(-\pi < \theta < \pi\). By setting \(\lambda_h(\theta) = \int_{-\pi}^{\pi} \lambda_h(\theta)d\theta \), the maximal explained variance is given by \(\lambda_1 + ... + \lambda_q \), and the percentage of explained variance is given by the ratio \(\frac{\sum_{i=1}^{q} \lambda_i}{\sum_{i=1}^{\infty} \lambda_i} \), as seen in the following subsection and section 3 this ratio provides a useful indicator for the choice of \(q \). The exact estimation of filter \(K^q(L) \), used to derive the common components from \(x_n \), is derived in Appendix A of FHLR (1999).

b. Establishing a bridge between the principal components and the generalized dynamic factor model

The use of principal components has introduced a method to extract the commonalities; however there is still a need to define a procedure to choose the relevant number of components. This is where the use of the dynamic factor approach lends a hand. The factor model that FHLR have in mind represents the sum of two unobservable components: the common components (common to all the variables in the panel) and a set of idiosyncratic components uncorrelated with the common components.

Let the panel \(x_{nt} \) be a construction of the first \(n \) elements of an infinite sequence \(x_{jt} \), \(j=1, \ldots, \infty \), then for each \(n \)th-element \(x_{nt} \).
\[
x_{jt} = \chi_{jt} + \xi_{jt} = b_j(L)u_j + \xi_{jt},
\]
where \(\chi_{jt} \) is the common component, \(u_j = (u_{jt}, \ldots, u_{jt}, \ldots) \) is the vector of common shocks, \(b_j(L) \) is a vector of two-sided filters and the idiosyncratic component \(\xi_{jt} \), which is

10 For a quick overview of principal component analysis in the frequency domain see Jolliffe (2002) and for a more comprehensive treatment see Brillinger (1981).
11 Here lies an important departure from the model proposed by SW (1989), where there is one common shock. Since there is one common shock it can only be loaded contemporaneously by all of the variables in the panel. Hence none of the variables in the panel can be leading or lagging and there must be only one source of common variation within the panel (although this also makes their common cycle stronger).
orthogonal to u_{i-k} for any k and j. Stacking over n we have the generalized dynamic factor model:

$$x_{nt} = \chi_{nt} + \xi_{nt} = B_n(L)u_t + \xi_{nt} \quad (2)$$

This model has the following properties:

Let $\lambda^{\text{t}}_{hn}(\theta)$, $h=1,..,n$ be the hth-eigenvalue of the spectral density matrix of χ_{nt}. Similarly, $\lambda^{\xi}_{hn}(\theta)$, $h=1,..,n$ be the hth-eigenvalue of the spectral density matrix of ξ_{nt}.

i. $\lambda^{\text{t}}_{hn}(\theta) < \Delta$, as $n \rightarrow \infty$, is bounded in $[-\pi, \pi]$ for h and n.

ii. $\lim_{n \rightarrow \infty} \lambda^{\text{t}}_{hn}(\theta) = \infty$, the first q eigenvalues diverge in $[-\pi, \pi]$ for $h \leq q$.

Returning to equation (1) and making explicit its dependence on n.

$$x_{nt} = \gamma_{nt} + \xi_{nt} = C_n(L)z_{nt} + \xi_{nt} \quad (3)$$

Now this model has the following properties:

iii. $\lambda_{hn}(\theta) < \Delta$, as $n \rightarrow \infty$, for $h=q+1,..,n$ in $[-\pi, \pi]$, the last $n-q$ eigenvalues of x_{nt} are bounded.

iv. $\lim_{n \rightarrow \infty} \lambda_{hn}(\theta) = \infty$, for $h \leq q$ in $[-\pi, \pi]$, the first q eigenvalues of x_{nt} diverge.

Under these assumptions there is a strong similarity between equations (2) and (3). FHLR (1999) show that conditions iii, and iv hold for the eigenvalues of $x_{nt} \Leftrightarrow$ the generalized factor representation exists (2). They also show that for n large γ_{nt} is a good approximation of χ_{nt}. In their own words “these results build a firm bridge linking principal components and factor analysis. The basic intuition behind them is that, by taking the principal components, we are taking an average of the x’s. When n is large, we get a kind of Large Number result. The idiosyncratic components, which are poorly correlated, disappear, so that we are essentially left with linear combinations of the (leads and lags of) the common components. Such linear combination spans almost the same dynamic space as the common factors…”

The bridge established above suggests a criterion for the choice of the number of principal components to maintain. Since $\lambda_{hn}(\theta)$ in $[-\pi, \pi]$ is bounded for $h>q$ and diverges for $h \leq q$ as $n \rightarrow \infty$, then for a large n we expect a “jump” (in the own words of the authors)

12 FHLR (1999), pg 6.
between λ_{qn} and λ_{q+1n}. This suggests adding principal components until the increase in the explained (marginal gain) is larger (smaller) than some prespecified value.

c. One-sided estimation and forecasting for the end-of-sample problem caused by two-sided filtering

The use of the two-sided filter $K^i(L)$ creates a problem at the end (or at the beginning) of the sample. Even thought we are interested in the historical performance of the index (central part of the sample) our main practical interest is the performance of the index at the end of the sample. However, we do not wish to loose the automatic realignments introduced by the two-sided filter. With this in mind FHLR (2003) suggest a one-sided filter for the end of the sample, also used in forecasting the common components. The authors use the dynamic principal components method along with the method developed by SW (2002) for generating forecast, in a factor model, using static principal components. Both methods share the same objective of finding a set of aggregates that span approximately the same dynamic space as the factors in a factor model. The hybrid two-step estimator developed by FHLR (2003), first estimates the covariance matrix for the common $(\Gamma_{\chi_0}^{\chi'})$ and idiosyncratic component $(\Gamma_{\xi_0}^{\xi'})$ obtained through the dynamic method; in the second step these matrices are used to obtain contemporaneous averages that minimize the fraction of idiosyncratic variance contained in the aggregates. Later these aggregates can be used for an in-sample or out-of-sample estimation of the common components.

d. An example of advantages of the two-sided filter

To gain a clearer perspective of the advantages of the two-sided filter (automatic realignment) for a more thorough approximation of the common factor space, let’s look at the following simple example\(^{13}\):

Assume that $x_{1t} = \chi_{1t} + \xi_{1t}$ and $x_{2t} = \chi_{2t} + \xi_{2t}$, where $\chi_{1t} = u_t$, $\var(\xi_{1t}) = \var(\xi_{2t}) = 1$, $\chi_{2t} = u_{t-1}$, $\cov(\xi_{1t}, \xi_{2t}) = 0$

\(^{13}\) This example is from FHLR (2003).
This implies that the two variables x_{1t} and x_{2t} share one common shock u_t loaded contemporaneously for the first variable and lagged one period for the second variable. Also the idiosyncratic and common variance ratio is 1 for both variables. Given these set of assumptions we can average these variables to obtain the relevant aggregates:

a. Through a Contemporaneous Average:

$$x_{1t} + x_{2t} = \frac{(u_t + u_{t-1}) + (\xi_{1t} + \xi_{2t})}{2}$$

Since the common shock is serially independent the idiosyncratic component is as large as the common component. No clear advantage in using this kind of average.

b. Through an Aligned Average

$$\frac{x_{1t-1} + x_{2t}}{2} = \frac{(u_{t-1} + u_{t-2}) + (\xi_{1t-1} + \xi_{2t})}{2} = u_{t-1} + \frac{(\xi_{1t-1} + \xi_{2t})}{2}$$

In this case the idiosyncratic variance is only $\frac{1}{2}$ of the common variance. Through this average the fraction of the idiosyncratic variance contained in the aggregate is minimized.

3) The Procedure

Following the theoretical background established in section 2 we now look at the procedure used in the construction of coincident and leading indexes for the Colombian economy.

a. Organizing and choosing the variables

The first step is to transform the variables in order to guarantee stationarity and standardize the variables. The next step is to define a-priori the group of core variables (which, a-priori, show an important commonality between them and with GDP) that must be in the panel and a group of candidate variables (non-core).
b. Core analysis

Using the variables defined in the core (Table 1), we set a predetermined number of factors q which we will later validate according to the criterion defined in section 2b and set a data dependent rule $[M = \text{round}(\sqrt{T}/4)]$ for the estimate of the sample covariance matrix. Then we use the discrete Fourier transform to estimate the spectral density matrix $\Sigma(\theta)$ of the panel x_{nt}. In the frequency domain a filter is constructed out of the first q eigenvectors from the estimated spectral density matrix (the dynamic principal components). Finally using the inverse discrete Fourier transform we obtain an estimate of filter $K^q(L)$; this filter is used to acquire the common component for each of the variables in the core. The idiosyncratic components are obtained as a residual (since they are orthogonal). We also get a scalar estimate of the idiosyncratic component as an average of the idiosyncratic components in the core; let’s call this the “overall idiosyncratic component (OYC henceforth)” for this panel. For the moment only the core variables are included in this panel –the core panel-.

c. Non-core analysis

In the non-core analysis the procedure used in obtaining the common components is the same as the one mentioned for the core variables. However since the non-core variables are candidate14 variables, the core panel is augmented by each of the non-core variables (one at a time). For each of these augmented panels the OYC is estimated and compare to the OYC of the core panel. If the OYC for the augmented panel is smaller than the OYC for the core panel then the candidate variable is included in the final panel. This final panel, naturally, includes the core variables and the non-core variables that reduce the OYC. This is equivalent to maximizing the overall commonality between the variables, which is our main objective.

14 Remember that we do not want to include variables in our final panel that have a small commonality with the other variables and a large idiosyncratic component.
d. Validation of the number of factors

After determining the final panel we must test if the \(q \) chosen \textit{a-priori} is optimal. Now following the criterion established in section 2b we know that the procedure must estimate the dynamic eigenvalues \((\lambda_1(\theta), \ldots, \lambda_q(\theta))\) in descending order, obtain their values in \([-\pi, \pi]\), and report the percentage of explained variance\(^{15}\), given by the ratio \[\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{n} \lambda_i} \] for \(k \leq n \). In sum the criterion tell us to include factors until the marginal contribution of an additional factor to the total explained variance is below a constant \(\alpha\), when this happens \(q \) is optimal.

e. Phase analysis and classification of the variables (leading, coincident or lagging)

Once the common components are estimated for each of the series of the final panel we must classify each of them as being “in phase” or in “phase opposition” with respect to the common component of the GDP, which is a reference point to classify the variables as leading, coincident or lagging. With this in mind, we proceed as follows: first we use the estimate of \(\Sigma^x(\theta) \)\(^{16}\) to compute the cross-spectral density of each common component with respect to the common component of GDP. Second we compute the argument of these densities, which is the phase angle delay (Appendix A) with respect to GDP, at frequency zero. Let \(\phi_j(\theta) \) in \([-\pi, \pi]\) be the phase angle shift for the common component \(\chi_j \). At frequency zero lets define the new series as:

\[\omega_j = \begin{cases} \chi_j & \text{if } \phi_j(0) = 0, \text{ in phase} \\ -\chi_j & \text{if } \phi_j(0) = \pi, \text{ phase opposition} \end{cases} \]

Using the series \(\omega_j \) we compute the phase angle shift, \(\psi_j(\theta^*) \), with respect to the GDP at a typical business cycle for the Colombian economy (the calibration of \(\theta^* \) will be explained)

\[\sum_{i=1}^{n} \lambda_i = 1 \]

\(^{15}\) Since the data is standardized.

\(^{16}\) The spectral density matrix of the common components.
in section 4). We also need to define a maximum phase angle lead, \(\tau \), according to which the classification of the variables will be defined as follows:

\[
\begin{align*}
|\psi_i(\theta^*)| < \tau, & \quad \text{Coincident} \\
\psi_i(\theta^*) > \tau, & \quad \text{Leading} \\
\psi_i(\theta^*) < -\tau, & \quad \text{Lagging}
\end{align*}
\]

f. Construction of the indexes and the end-of-sample correction

From the classification given above the indexes are constructed as the averages of the coincident and leading common components. The level indexes are constructed as the cumulated sums of the original indexes. Since the estimated common components come from a two-sided filter \(K^q(L) \), these estimates at the beginning and at the end of the sample are not adequate. To overcome this FH LR (2003) use contemporaneous averages of the original variables or the one-sided filter mentioned in section 2c for the beginning and last three observations in the sample.

4) Data and calibration for the Colombian economy

The panel constructed from the Colombian data is a set of 70 economic time series, 5 core and 65 non-core variables in the quarterly sample period 1984:01 – 2003:01 (Table 1). Each variable was analyzed to determine the order of integration using unit root test (Dickey-Fuller, Phillips-Perron and KPSS) and the HEGY17 test for seasonal unit roots in quarterly series. Following the results of these tests the variables were transformed to guarantee stationarity (by first difference) and to remove seasonality (deterministic or stochastic). Most of the variables showed relevant deterministic seasonality (seasonally adjusted through the use of seasonal dummies) or no seasonality (Table 2). The variables that showed stochastic seasonal patterns were adjusted with the relevant filter identified.

with the HEGY test). Also all of the seasonally adjusted and not seasonally adjusted series show some evidence of a unit root except for 18 series18 (Table 3).

The estimation procedure described in section 3 was calibrated for Colombia following Maurer and Uribe (1996) and Maurer, Uribe and Birchenall (1996) for the choice of the length of the business cycle for the Colombian economy. According to these authors the length of the business cycle, in Colombia, is 4 to 5 years. For the empirical application the length of the cycle chosen is 4 years (the results are not sensitive to choosing 5 years). As it was explained in section 3 the length of the cycle is fundamental in the phase analysis to determine the relevant frequencies associated to the cycle and to calibrate the timelead (phase angle lead in the frequency domain) between the series, given a particular cycle. The maximum phase lead is set to one month (expressed in quarters $\tau = 0.33$).

In choosing the optimal number of factors q following the criterion, established in section 2b and explained in detail in section 3d, we must set a floor for the marginal contribution of an additional factor to the total explained variance. For the empirical application α was fixed to 5%, given this calibration $q=2$ (two common factors).

18 SIT, AMA, EPT, VOP, ER3, ES6, OVN, PRC, VCC, TSO, PCA, IPU, AM1, CCP, EXC, CDT, LCO and PMA.
5) *Results from an empirical application to the Colombian economy*

The lagging, coincident and leading indexes are derived after calibrating the model. From the first step we obtain the final panel which includes the variables in the core and only two candidate variables SIT (Current economic conditions) and OVN (Car Sales). These are the only variables outside the core that reduce the OYC. These results indicate that the evolution of the real cycle is poorly correlated with the evolution of prices and wages, monetary and financial cycle, trade cycles, fiscal cycles, the evolution of asset prices and the construction cycle. This seems a bit harsh; however this might be the result of using indexes with in the core and non core (such as SIT and IPR) which could sum-up indirectly the dynamic of some of these cycles.

The final panel only includes 7 variables, which poses an important issue since the methodology is base on a large n. The next step after defining the final panel and validating the number of factors ($q=2$) is the analysis of the time phase lead (or delay) of each variable with respect to the GDP. In sum the criteria for variable classification, explained in section 3b and calibrated according to section 4, is that a variable is *lagging* if its time phase delay is larger than a month (0.33 quarters), its *leading* if the time phase lead is larger than a month (0.33 quarters), and all other variables in between these definitions are considered as *coincident*. Using these rules the classification of the variables in the final panel is as follows:

<table>
<thead>
<tr>
<th>Code of the variable</th>
<th>Time lead *</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIB</td>
<td>0</td>
<td>Coincident</td>
</tr>
<tr>
<td>CUT</td>
<td>0.7240</td>
<td>Leading</td>
</tr>
<tr>
<td>TSD</td>
<td>0.0662</td>
<td>Coincident</td>
</tr>
<tr>
<td>ENE</td>
<td>-0.0249</td>
<td>Coincident</td>
</tr>
<tr>
<td>IPR</td>
<td>0.3361</td>
<td>Leading</td>
</tr>
<tr>
<td>SIT</td>
<td>-0.2745</td>
<td>Coincident</td>
</tr>
<tr>
<td>OVN</td>
<td>-0.5824</td>
<td>Lagging</td>
</tr>
</tbody>
</table>

*Time leads are expressed in quarters.
a. Turning Points

From the coincident index we can determine the turning points as the dates t^* in which the index reaches a local maxima (peak) or minima (trough). To avoid the inconvenience of having two local maxima (or minima) too close together and following Maurer et al. (1996) procedure for identifying turning points a condition is established such that no cycle can be shorter than 4 quarters.

![Coincident index graph showing turning points]

Turning Points for the coincident index

<table>
<thead>
<tr>
<th>Episode</th>
<th>Trough</th>
<th>Peak</th>
<th>Lenght in Months</th>
<th>Years</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Expansion</td>
<td>Contraction</td>
<td>Cycle</td>
</tr>
<tr>
<td>0</td>
<td>Sep-99</td>
<td>Jun-00</td>
<td>10</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Mar-97</td>
<td>Sep-97</td>
<td>7</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Dic-94</td>
<td>Mar-95</td>
<td>3</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Jun-92</td>
<td>Mar-93</td>
<td>10</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>Dic-90</td>
<td>Mar-92</td>
<td>16</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Dic-88</td>
<td>Jun-90</td>
<td>19</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Dic-86</td>
<td>Jun-88</td>
<td>19</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Sep-85</td>
<td>Sep-86</td>
<td>13</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>
Following the criterion we can identify eight complete cycles and an incomplete cycle (beginning in March of 2002) for the period 1985:01 to 2003:01. However, since we calibrated the model for a business cycle length of 4 years we have aggregated these shorter cycles in order to have 4 episodes. Episodes 2 and 3 are within the range of the ones identified by Maurer et al. (1996) for the same period and the predominant expansion characterized by episodes 3 and 4 are consistent with Ocampo and Villar (1993) historical account of the period\(^{19}\). The comparison of the first and second episode with the third and the fourth reveal a lengthening of the cycle in the nineties.

The turning points for the common component of GDP are similar in structure give or take a few changes in the dates of 2 peaks and 3 troughs (Appendix B).

\textit{b. Lagging-Coincident-Leading Indexes}

The leading variables are the Capacity Utilization Rate and the Industrial Production index, this is no surprise and it is also found on the empirical application of FHLR (1999) for the EURO area. However, it is surprising that a variable such as unemployment is coincident, because labor market variables are considered anti-cyclical and in most cases lagging\(^{20}\).

With these results we can construct the lagging, coincident and leading indexes for the Colombian economy.

\(^{19}\) As described in Maurer et al. (1996) pg 9.

\(^{20}\) Maurer et al.(1996) also classify unemployment within their coincident index.
The first observation of the indexes is that there is only a clear lead or lag with respect to the coincident index in some of the turning points, especially in the lagging index. Even though we cannot identify a clear lead for the last recession (1999) there is a strong lag (of a quarter) in the peak (September-97) and trough (September-99) of that episode. For a clearer look at the leading and coincident relations, let’s take a look at the leading index and the common component of the log of GDP.
The leading index shows a stronger leading relation with the common component of the GDP, however, not all of the leads identified (in arrows) coincide with the peaks and troughs identified for the common component of GDP. The leading index manages to anticipate by a quarter the slowdown of economic activity at the end of 1995, the short turn around of economic activity in 1997, the beginning of the recession in 1998 and the lowest point of the recession in 1999. The latest turning point in March 2002 is not anticipated.
6) Conclusions

This paper sums up the results of an ongoing research on the construction of coincident and leading indexes for the Colombian economic activity and the characteristics of the business cycle. The statistical model (and software21) has a different approximation in the construction of such indexes then the ones applied with Colombian data before. The greatest strength of the methodology developed by FHLR is that it is a self contained system where no \textit{a-priori} assumption on the coincident or leading characteristics of the series is needed. However, since the asymptotics (a large final panel, \(n \)) guarantees the consistency of the estimates the use of a considerable small number of series (70) in the Colombian case relative to the multi-country applications for the EURO area (246), brings forth consistency issues.

There are still a few issues to be addressed in future research (both theoretically and empirically for the Colombian case), such as: small sample performance of the two-sided and one-sided filter, small sample diagnostics, forecasting the coincident index, and the construction of a monthly index for the Colombian economy using the generalized dynamic factor model.

21 The software has been supplied by the authors (www.dynfactors.org).
References

Appendix A

Definitions: A few relevant concepts you ought to know about time series analysis in the frequency domain

- **FOURIER SERIES**: Fourier series are expansions of periodic functions $f(x)$ in terms of an infinite sum of sines and cosines of the form:

 $$f(x) = \sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} b_n \sin(nx)$$

 Fourier series make use of the orthogonality relationships of the sine and cosine functions, which can be used to calculate the coefficients a_n and b_n in the sum. The computation and study of Fourier series is known as harmonic analysis.\(^1\)

- **PHASE**: Angular position of a quantity. In our case we are interested in the phase difference between the frequency components of a set of processes. The phase can be expressed in units of time or in degrees.

 1. Phase Lead (Delay): as a small time lead (delay) between two waveforms at a given frequency.

\(^1\) Taken from http://mathworld.wolfram.com/FourierSeries.html
2. Phase Angle: as a percentage of the entire wave period in degrees.
APPENDIX B

Turning Points for the common component of GDP

<table>
<thead>
<tr>
<th>Episode</th>
<th>Trough</th>
<th>Peak</th>
<th>Length in Months</th>
<th>Years Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Expansion</td>
<td>Contraction</td>
</tr>
<tr>
<td>0</td>
<td>Mar-02</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dic-99</td>
<td>Jun-00</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Mar-97</td>
<td>Sep-97</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Dic-94</td>
<td>Jun-95</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Jun-92</td>
<td>Jun-93</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Dic-90</td>
<td>Mar-92</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Dic-88</td>
<td>Jun-90</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Mar-87</td>
<td>Jun-88</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Dic-85</td>
<td>Sep-86</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Original Frequency</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBI</td>
<td>Seasonally Adjusted Real GDP</td>
<td>Quarterly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>CUT</td>
<td>Capacity Utilization Rate 1/</td>
<td>Quarterly</td>
<td>Fedesarrollo</td>
<td></td>
</tr>
<tr>
<td>TSD</td>
<td>Unemployment 1/</td>
<td>Quarterly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>ENE</td>
<td>Demand of Energy</td>
<td>Monthly</td>
<td>ISA</td>
<td></td>
</tr>
<tr>
<td>IPR</td>
<td>Industrial Production index</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>NON-CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Expectations on Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST1</td>
<td>Current economic conditions 1/</td>
<td>Monthly</td>
<td>Question 1 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>Production activity compared to the previous month 1/</td>
<td>Monthly</td>
<td>Question 2 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>EPT</td>
<td>Stocks at the end of the month 1/</td>
<td>Monthly</td>
<td>Question 3 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>PMA</td>
<td>Received orders compared with previous month 1/</td>
<td>Monthly</td>
<td>Question 4 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>VOP</td>
<td>Volume of orders compared with previous month 1/</td>
<td>Monthly</td>
<td>Question 5 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>NWP</td>
<td>Number of orders 1/</td>
<td>Monthly</td>
<td>Question 6 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>SDM</td>
<td>Installed capacity, given the current situation of demand 1/</td>
<td>Monthly</td>
<td>Question 7 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>EP3</td>
<td>Production expectations for the next 3 months 1/</td>
<td>Monthly</td>
<td>Question 8 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>EP5</td>
<td>Price expectations for the next 3 months 1/</td>
<td>Monthly</td>
<td>Question 9 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>EBS</td>
<td>Expectations on the economy during the next 6 months 1/</td>
<td>Monthly</td>
<td>Question 10 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>EDA</td>
<td>Actual installed capacity given the number of orders 1/</td>
<td>Monthly</td>
<td>Question 11 Business Survey (Fedesarrollo)</td>
<td></td>
</tr>
<tr>
<td>B. Economic Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVN</td>
<td>Car Sales</td>
<td>Monthly</td>
<td>Colmótores</td>
<td></td>
</tr>
<tr>
<td>IPE</td>
<td>Entries of foreign passengers (Air Transport)</td>
<td>Monthly</td>
<td>Aerocivil</td>
<td></td>
</tr>
<tr>
<td>IPF</td>
<td>International departures of passengers (Air Transport)</td>
<td>Monthly</td>
<td>Aerocivil</td>
<td></td>
</tr>
<tr>
<td>CNC</td>
<td>Flight Load</td>
<td>Monthly</td>
<td>Aerocivil</td>
<td></td>
</tr>
<tr>
<td>PNC</td>
<td>Domestic passengers (Air Transport)</td>
<td>Monthly</td>
<td>Aerocivil</td>
<td></td>
</tr>
<tr>
<td>PRC</td>
<td>Coffee Production</td>
<td>Monthly</td>
<td>Federación Nacional de Cafeteros (Boletín Mensual)</td>
<td></td>
</tr>
<tr>
<td>PPE</td>
<td>Oil Production</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>SGA</td>
<td>Livestock sacrifice</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>VCC</td>
<td>Value of coffee crops</td>
<td>Monthly</td>
<td>Federación Nacional de Cafeteros (Boletín Mensual)</td>
<td></td>
</tr>
<tr>
<td>N/C</td>
<td>Sales index excluding combustibles</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>CEC</td>
<td>Comercial employment index</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>TSO</td>
<td>Employment 1/</td>
<td>Quarterly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>PUB</td>
<td>Real GDP USA</td>
<td>Quarterly</td>
<td>Bureau of Economic Analysis (http://www.bea.gov/)</td>
<td></td>
</tr>
<tr>
<td>C. Prices and Wages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POI</td>
<td>International oil price</td>
<td>Monthly</td>
<td>EIA</td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>International coffee price</td>
<td>Monthly</td>
<td>Federación Nacional de Cafeteros (Boletín Mensual)</td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>Consumer price index</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>Producer price index</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>Heavy construction cost index</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>IFU</td>
<td>Producer price index USA</td>
<td>Monthly</td>
<td>Bureau of Economic Analysis (http://www.bea.gov/)</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Index of the real wage in manufacturing industries</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>D. Monetary and financial sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>Real monetary base</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>EFE</td>
<td>Currency in circulation in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>AM1</td>
<td>Real Money Supply (M1)</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>AM2</td>
<td>Real M2</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>AM3</td>
<td>Real M3 plus bonds</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CCP</td>
<td>Private Real Checking Accounts</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CCO</td>
<td>Public Real Checking Accounts</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CTP</td>
<td>Real loan portfolio of the financial system</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>DCC</td>
<td>Total Real Checking Accounts</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TSE</td>
<td>Total value of deposits in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CU1</td>
<td>Portafolio in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TAH</td>
<td>Total value savings accounts in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TCT</td>
<td>Total values of certificate of deposits accounts in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TDE</td>
<td>Total value of available deposits in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TFD</td>
<td>Total values of fiduciary deposits in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CED</td>
<td>Values of Certificates in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>Total Bonds in real terms</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>E. Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>Net International Reserves</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>EXC</td>
<td>Coffee Exports in real terms</td>
<td>Monthly</td>
<td>Federación Nacional de Cafeteros (Boletín Mensual)</td>
<td></td>
</tr>
<tr>
<td>DBC</td>
<td>Current Account Deficit</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>EXP</td>
<td>Total Exports in real terms (FOB)</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>IMF</td>
<td>Total Imports in real terms (FOB)</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>IBC</td>
<td>Imports of consumption goods in real terms</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>IBI</td>
<td>Imports of Intermediate goods in real terms</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>ISK</td>
<td>Imports of capital goods in real terms</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>F. Fiscal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEF</td>
<td>Deficit of the Central Government (as % of GDP)</td>
<td>Quarterly</td>
<td>CONFIS</td>
<td></td>
</tr>
<tr>
<td>G. Asset Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TER</td>
<td>Terms of trade</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>Real exchange rate index</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>Real Interest rates of 90-day deposits for banks and corporations 1/</td>
<td>Monthly</td>
<td>Banco de la República</td>
<td></td>
</tr>
<tr>
<td>H. Construction Sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCO</td>
<td>Approved building area</td>
<td>Monthly</td>
<td>DANE</td>
<td></td>
</tr>
<tr>
<td>PAC</td>
<td>Approved Mortgage Loans (Construction companies)</td>
<td>Monthly</td>
<td>ICAM</td>
<td></td>
</tr>
<tr>
<td>PAI</td>
<td>Approved Mortgage Loans (Individuals)</td>
<td>Monthly</td>
<td>ICAM</td>
<td></td>
</tr>
<tr>
<td>PEC</td>
<td>Mortgage Loans (Construction companies)</td>
<td>Monthly</td>
<td>ICAM</td>
<td></td>
</tr>
<tr>
<td>PIE</td>
<td>Mortgage Loans (Individuals)</td>
<td>Monthly</td>
<td>ICAM</td>
<td></td>
</tr>
</tbody>
</table>

1/ Variables not in logs
<table>
<thead>
<tr>
<th>Code</th>
<th>Statistical (Ho= X_t-14(1)) Critical Value</th>
<th>Statistical (Ho= X_t-34(1,1)) Critical Value</th>
<th>Ljung-Box Deterministic components</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUT</td>
<td>-1.441 -1.940 5.284 6.600 0.856 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSD</td>
<td>-4.328 -1.940 40.212 6.600 0.504 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME</td>
<td>-4.038 -1.960 37.799 6.570 0.376 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPR</td>
<td>-0.637 -1.960 11.506 6.570 0.470 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-CORE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Expectations on Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIT</td>
<td>-5.400 -1.940 34.948 6.600 0.530 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMA</td>
<td>-2.637 -1.960 29.127 6.570 0.857 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPT</td>
<td>-3.492 -1.960 20.219 6.570 0.470 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOP</td>
<td>-0.232 -1.960 15.780 6.570 0.470 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNP</td>
<td>-3.101 -1.960 8.469 6.570 0.616 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Economic Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVN</td>
<td>-4.744 -1.960 35.496 6.600 0.813 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSO</td>
<td>-4.328 -1.960 34.948 6.600 0.504 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Prices and Wages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POI</td>
<td>-2.366 -1.960 17.835 3.080 0.973 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>-4.553 -1.960 25.430 3.080 0.698 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC</td>
<td>-1.017 -1.960 2.714 2.980 0.584 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPR</td>
<td>-2.314 -1.960 4.117 3.080 0.241 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td>-0.933 -1.960 0.913 3.080 0.173 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Monetary and financial sector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>-9.696 -1.960 40.694 3.080 0.303 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Trade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>-3.797 -1.960 18.408 3.080 0.802 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Fiscal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>-5.837 -1.960 40.876 3.080 0.802 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Asset Prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TER</td>
<td>-3.482 -1.960 28.696 3.080 0.449 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Construction Sector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCO</td>
<td>-3.076 -1.960 21.080 3.080 0.375 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC</td>
<td>-4.225 -1.960 43.675 3.080 0.996 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAI</td>
<td>-3.955 -1.960 53.237 6.570 0.241 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>-0.828 -1.960 31.328 6.570 0.727 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REI</td>
<td>71.143 -1.960 6.570 0.183 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Deterministic Components: 1- None, 2- Constant, 3-Constant and seasonal dummy variables, 4- Constant and Trend (linear), 5- Constant, seasonal dummy variables and trend (linear).
Table 3

<table>
<thead>
<tr>
<th>Code</th>
<th>ADF (Ho: $X_t \sim I(1)$) Critical Value</th>
<th>Ljung-Box (p-value, 18)</th>
<th>Phillips-Perron (Ho: $X_t \sim I(1)$) Critical Value</th>
<th>KPSS (Ho: $X_t \sim I(1)$) Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIB</td>
<td>-1.920</td>
<td>-2.890</td>
<td>-2.172</td>
<td>-2.900</td>
</tr>
<tr>
<td>CUT</td>
<td>-0.934</td>
<td>-2.890</td>
<td>-1.581</td>
<td>-2.900</td>
</tr>
<tr>
<td>TSB</td>
<td>-1.119</td>
<td>-1.950</td>
<td>-0.511</td>
<td>-1.945</td>
</tr>
<tr>
<td>ENE</td>
<td>-1.910</td>
<td>-2.890</td>
<td>-2.713</td>
<td>-2.900</td>
</tr>
<tr>
<td>IPR</td>
<td>-1.431</td>
<td>-2.890</td>
<td>-1.775</td>
<td>-2.900</td>
</tr>
<tr>
<td>NON-CORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIT</td>
<td>-2.302</td>
<td>-1.950</td>
<td>-2.173</td>
<td>-1.945</td>
</tr>
<tr>
<td>AWH</td>
<td>-3.530</td>
<td>-3.450</td>
<td>-3.946</td>
<td>-3.470</td>
</tr>
<tr>
<td>EPT</td>
<td>-2.632</td>
<td>-1.950</td>
<td>-4.576</td>
<td>-3.470</td>
</tr>
<tr>
<td>UOP</td>
<td>-3.719</td>
<td>-3.450</td>
<td>-3.957</td>
<td>-3.470</td>
</tr>
<tr>
<td>NVP</td>
<td>-1.510</td>
<td>-1.950</td>
<td>-2.534</td>
<td>-1.945</td>
</tr>
<tr>
<td>SDM</td>
<td>-3.907</td>
<td>-1.950</td>
<td>-3.977</td>
<td>-1.945</td>
</tr>
<tr>
<td>TSD</td>
<td>-0.548</td>
<td>-1.950</td>
<td>-1.020</td>
<td>-1.945</td>
</tr>
<tr>
<td>ER3</td>
<td>-3.830</td>
<td>-3.450</td>
<td>-10.446</td>
<td>-3.470</td>
</tr>
<tr>
<td>B. Economic Activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVN</td>
<td>2.081</td>
<td>-1.950</td>
<td>-6.605</td>
<td>-1.945</td>
</tr>
<tr>
<td>IPE</td>
<td>-1.175</td>
<td>-2.890</td>
<td>-0.465</td>
<td>-2.900</td>
</tr>
<tr>
<td>IPS</td>
<td>-2.722</td>
<td>-1.950</td>
<td>-0.629</td>
<td>-1.945</td>
</tr>
<tr>
<td>C. Prices and Wages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POI</td>
<td>-0.967</td>
<td>-1.950</td>
<td>-2.856</td>
<td>-2.900</td>
</tr>
<tr>
<td>IPC</td>
<td>-3.552</td>
<td>-3.450</td>
<td>-2.180</td>
<td>-3.470</td>
</tr>
<tr>
<td>D. Monetary and financial sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>-1.750</td>
<td>-1.950</td>
<td>-1.543</td>
<td>-1.945</td>
</tr>
<tr>
<td>EFE</td>
<td>-3.387</td>
<td>-3.450</td>
<td>-2.022</td>
<td>-3.470</td>
</tr>
<tr>
<td>AM1</td>
<td>-3.259</td>
<td>-3.450</td>
<td>-1.844</td>
<td>-3.470</td>
</tr>
<tr>
<td>AM2</td>
<td>-1.026</td>
<td>-1.950</td>
<td>-1.200</td>
<td>-1.945</td>
</tr>
<tr>
<td>AM3</td>
<td>-1.061</td>
<td>-1.950</td>
<td>-0.828</td>
<td>-3.470</td>
</tr>
<tr>
<td>C. Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF</td>
<td>-1.563</td>
<td>-1.950</td>
<td>-1.528</td>
<td>-1.945</td>
</tr>
<tr>
<td>IBX</td>
<td>-1.520</td>
<td>-2.890</td>
<td>-0.815</td>
<td>-2.900</td>
</tr>
<tr>
<td>IBC</td>
<td>-2.680</td>
<td>-1.950</td>
<td>-7.691</td>
<td>-1.945</td>
</tr>
<tr>
<td>IBD</td>
<td>-2.540</td>
<td>-2.890</td>
<td>-2.595</td>
<td>-2.900</td>
</tr>
<tr>
<td>E. Trade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>-1.750</td>
<td>-1.950</td>
<td>-1.977</td>
<td>-1.945</td>
</tr>
<tr>
<td>EXC</td>
<td>-2.413</td>
<td>-2.890</td>
<td>-1.831</td>
<td>-2.900</td>
</tr>
<tr>
<td>DCC</td>
<td>-2.413</td>
<td>-2.890</td>
<td>-2.051</td>
<td>-2.900</td>
</tr>
<tr>
<td>IPE</td>
<td>-0.987</td>
<td>-3.450</td>
<td>-4.698</td>
<td>-3.470</td>
</tr>
<tr>
<td>IPP</td>
<td>-3.512</td>
<td>-3.450</td>
<td>-2.746</td>
<td>-3.470</td>
</tr>
<tr>
<td>F. Fiscal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>-0.424</td>
<td>-1.950</td>
<td>-0.270</td>
<td>-1.945</td>
</tr>
<tr>
<td>IBC</td>
<td>-0.884</td>
<td>-1.950</td>
<td>-0.844</td>
<td>-2.900</td>
</tr>
<tr>
<td>O. Asset Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>-1.905</td>
<td>-2.890</td>
<td>-1.237</td>
<td>-2.900</td>
</tr>
<tr>
<td>TAF</td>
<td>-1.563</td>
<td>-1.950</td>
<td>-1.528</td>
<td>-1.945</td>
</tr>
<tr>
<td>DEF</td>
<td>-0.521</td>
<td>-1.950</td>
<td>-0.439</td>
<td>-1.945</td>
</tr>
<tr>
<td>IBX</td>
<td>-0.375</td>
<td>-1.950</td>
<td>-0.245</td>
<td>-1.945</td>
</tr>
<tr>
<td>TAF</td>
<td>-0.927</td>
<td>-1.950</td>
<td>-2.103</td>
<td>3.120</td>
</tr>
<tr>
<td>H. Construction Sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCO</td>
<td>-2.100</td>
<td>-2.890</td>
<td>-3.132</td>
<td>-2.900</td>
</tr>
<tr>
<td>PAC</td>
<td>-0.904</td>
<td>-1.950</td>
<td>-1.022</td>
<td>-1.945</td>
</tr>
<tr>
<td>TAF</td>
<td>-1.772</td>
<td>-1.950</td>
<td>-1.616</td>
<td>-1.945</td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>La coyuntura económica en Colombia y Venezuela</td>
<td>Andrés Langebaek, Patricia Delgado, Fernando Mesa Parra</td>
<td>Octubre 1992</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>La tasa de cambio y el comercio colombiano-venezolano</td>
<td>Fernando Mesa Parra, Andrés Langebaek</td>
<td>Noviembre 1992</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>¿Las mayores exportaciones colombianas de café redujeron el precio externo?</td>
<td>Carlos Esteban Posada, Andrés Langebaek</td>
<td>Noviembre 1992</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>El costo de uso del capital en Colombia.</td>
<td>Mauricio Olivera</td>
<td>Diciembre 1992</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Colombia y los flujos de capital privado a América Latina</td>
<td>Andrés Langebaek</td>
<td>Febrero 1993</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Infraestructura física. “Clubs de convergencia” y crecimiento económico.</td>
<td>José Dario Uribe</td>
<td>Febrero 1993</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>El costo de uso del capital: una nueva estimación (Revisión)</td>
<td>Mauricio Olivera</td>
<td>Marzo 1993</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dos modelos de transporte de carga por carretera.</td>
<td>Carlos Esteban Posada, Edgar Trujillo Ciro, Alvaro Concha, Juan Carlos Elorza</td>
<td>Marzo 1993</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>La determinación del precio interno del café en un modelo de optimización intertemporal.</td>
<td>Carlos Felipe Jaramillo, Carlos Esteban Posada, Edgar Trujillo Ciro, Alvaro Concha, Juan Carlos Elorza</td>
<td>Abril 1993</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>El encaje óptimo</td>
<td>Edgar Trujillo Ciro, Carlos Esteban Posada</td>
<td>Mayo 1993</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Crecimiento económico, “Capital humano” y educación: la teoría y el caso colombiano posterior a 1945</td>
<td>Carlos Esteban Posada</td>
<td>Junio 1993</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Estimación del PIB trimestral según los componentes del gasto.</td>
<td>Rafael Cubillos, Fanny Mercedes Valderrama</td>
<td>Junio 1993</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Diferencial de tasas de interés y flujos de capital en Colombia</td>
<td>Andrés Langebaek</td>
<td>Agosto 1993</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Crecimiento económico y apertura en Chiley México y perspectivas para Colombia.</td>
<td>Fernando Mesa Parra</td>
<td>Septiembre 1993</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>El papel del capital público en la producción, inversión y el crecimiento económico en Colombia.</td>
<td>Fabio Sánchez Torres</td>
<td>Octubre 1993</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tasa de cambio real y tasa de cambio de equilibrio.</td>
<td>Andrés Langebaek</td>
<td>Octubre 1993</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>La evolución económica reciente: dos interpretaciones alternativas.</td>
<td>Carlos Esteban Posada</td>
<td>Noviembre 1993</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>El papel de gasto público y su financiación en la coyuntura actual: algunas implicaciones complementarias.</td>
<td>Alvaro Zarta Avila</td>
<td>Diciembre 1993</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Inversión extranjera y crecimiento económico.</td>
<td>Alejandro Gaviria</td>
<td>Diciembre 1993</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Inflación y crecimiento en Colombia</td>
<td>Javier Alberto Gutiérrez</td>
<td>Febrero 1994</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Exportaciones y crecimiento en Colombia</td>
<td>Alejandro Gaviria</td>
<td>Febrero 1994</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Experimento con la vieja y la nueva teoría del crecimiento económico</td>
<td>Carlos Esteban Posada</td>
<td>Febrero 1994</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Modelos económicos de criminalidad y la posibilidad de una dinámica</td>
<td>Carlos Esteban Posada</td>
<td>Abril 1994</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Regímenes cambiarios, política macroeconómica y flujos de capital en</td>
<td>Carlos Esteban Posada</td>
<td>Abril 1994</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Comercio intraindustrial: el casocolombiano</td>
<td>Carlos Pombo</td>
<td>Abril 1994</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Efectos de una bonanza petrolera a la luz de un modelo de optimización</td>
<td>Hernando Zuleta</td>
<td>Mayo 1994</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Crecimiento económico y productividad en Colombia: una perspectiva</td>
<td>Sergio Clavijo</td>
<td>Junio 1994</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Inflación o desempleo: ¿Acaso hay escogencia en Colombia?</td>
<td>Sergio Clavijo</td>
<td>Agosto 1994</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>La distribución del ingreso y el sistema financiero</td>
<td>Edgar Trujillo Ciro</td>
<td>Agosto 1994</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>La trinidad económica imposible en Colombia: estabilidad cambiaria,</td>
<td>Sergio Clavijo</td>
<td>Agosto 1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td>independencia monetaria y flujos de capital libres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>¿Déjà vu?: tasa de cambio, deuda externa y esfuerzo exportador</td>
<td>Sergio Clavijo</td>
<td>Mayo 1995</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>La crítica de Lucas y la inversión en Colombia: nueva evidencia</td>
<td>Mauricio Cárdenas</td>
<td>Septiembre 1995</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Tasa de Cambio y ajuste del sector externo en Colombia.</td>
<td>Fernando Mesa Parra Dairo Estrada</td>
<td>Septiembre 1995</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Análisis de la evolución y composición del Sector Público</td>
<td>Mauricio Olivera G. Manuel Fernando Castro Q.</td>
<td>Septiembre 1995</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Incidencia distributiva del IVA en un modelo del ciclo de vida</td>
<td>Juan Carlos Parra Osorio</td>
<td>Octubre 1995</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Por qué los niños pobres no van a la escuela?</td>
<td>Fabio Sánchez Torres</td>
<td>Noviembre 1995</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Multiplicadores de Contabilidad derivados de la Matriz de Contabilidad</td>
<td>Javier Alberto Gutiérrez</td>
<td>Enero 1996</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>El ciclo de referencia de la economía colombiana.</td>
<td>Martin Maurer Marfa Camila Uribe S.</td>
<td>Febrero 1996</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Impacto de las transferencias intergubernamentales en la distribución</td>
<td>Juan Carlos Parra Osorio</td>
<td>Marzo 1996</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Los efectos no considerados de la apertura económica en el mercado laboral industrial.</td>
<td>Fernando Mesa Parra, Javier Alberto Gutiérrez</td>
<td>Mayo 1996</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Un modelo de Financiamiento óptimo de una utilización permanente en el gasto público: Una ilustración con el caso colombiano.</td>
<td>Alvaro Zarta Avila</td>
<td>Junio 1996</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Un sistema de indicadores líderes para Colombia</td>
<td>Martín Maurer, María Camila Uribe, Javier Birchenall</td>
<td>Agosto 1996</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Evolución y determinantes de la productividad en Colombia: Un análisis global y sectorial</td>
<td>Fabio Sánchez Torres, Jorge Iván Rodríguez, Jairo Núñez Méndez</td>
<td>Agosto 1996</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Gobernabilidad y Finanzas Públicas en Colombia.</td>
<td>César A. Caballero R</td>
<td>Noviembre 1996</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Tasas Marginales Efectivas de Tributación en Colombia.</td>
<td>Mauricio Olivera G.</td>
<td>Noviembre 1996</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Un modelo keynesiano para la economía colombiana</td>
<td>Fabio José Sánchez T., Clara Elena Parra</td>
<td>Febrero 1997</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Trimestralización del Producto Interno Bruto por el lado de la oferta.</td>
<td>Fanny M. Valderrama</td>
<td>Febrero 1997</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Poder de mercado, economías de escala, complementariedades intersectoriales y crecimiento de la productividad en la industria colombiana.</td>
<td>Juan Mauricio Ramírez</td>
<td>Marzo 1997</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Estimación y calibración de sistemas flexibles de gasto.</td>
<td>Orlando Gracia, Gustavo Hernández</td>
<td>Abril 1997</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Un Modelo de Equilibrio General Computable con Competencia imperfecta para Colombia.</td>
<td>Juan Pablo Arango, Orlando Gracia, Gustavo Hernández, Juan Mauricio Ramírez</td>
<td>Junio 1997</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>El cálculo del PIB Potencial en Colombia.</td>
<td>Javier A. Birchenall J.</td>
<td>Julio 1997</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Determinantes del Ahorro de los hogares. Explicación de su caída en los noventa.</td>
<td>Alberto Castañeda C., Gabriel Piraquive G.</td>
<td>Julio 1997</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Determinantes de la participación laboral de hombres y mujeres en Colombia: 1976-1995</td>
<td>Rocio Ríbero, Claudia Meza</td>
<td>Agosto 1997</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Correcciones a los Ingresos de las Encuestas de hogares y distribución del Ingreso Urbano en Colombia.</td>
<td>Jairo A. Núñez Méndez, Jaime A. Jiménez Castro</td>
<td>Septiembre 1997</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Ahorro, Inversión y Transferencias en las Entidades Territoriales Colombianas</td>
<td>Fabio Sánchez Torres, Mauricio Olivera G., Giovanni Cortés S.</td>
<td>Octubre 1997</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Efectos de la Tasa de cambio real sobre la Inversión industrial en un Modelo de transferencia de precios.</td>
<td>Fernando Mesa Parra, Leyla Marcela Salguero</td>
<td>Octubre 1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fabio Sánchez Torres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Income distribution, human capital and economic growth in Colombia.</td>
<td>Javier A. Birchenall</td>
<td>Octubre 1997</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>La tasa de interés “óptima”</td>
<td>Carlos Esteban Posada, Edgar Trujillo Ciro</td>
<td>Febrero 1998</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Flujo Internacionales de Capital en Colombia: Un enfoque de Portafolio</td>
<td>Ricardo Rocha García, Fernando Mesa Parra</td>
<td>Marzo 1998</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Reformas comerciales, márgenes de beneficio y productividad en la industria colombiana</td>
<td>Juan Pablo Arango, Orlando Gracia, Gustavo Hernández, Juan Mauricio Ramírez</td>
<td>Abril 1998</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Capital y Crecimiento Económico en un Modelo Dinámico: Una presentación de la dinámica Transicional para los casos de EEUU y Colombia</td>
<td>Alvaro Zarta Avila</td>
<td>Mayo 1998</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Determinantes de la Inversión en Colombia: Evidencia sobre el capital humano y la violencia.</td>
<td>Clara Helena Parra</td>
<td>Junio 1998</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Mujeres en sus casas: Un recuento de la población Femenina económicamente activa</td>
<td>Piedad Urdinola Contreras</td>
<td>Junio 1998</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>La tasa natural de desempleo en Colombia</td>
<td>Martha Luz Henao Norberto Rojas</td>
<td>Junio 1998.</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>The role of shocks in the colombian economy</td>
<td>Donald J. Robbins</td>
<td>Julio 1998.</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Evaluación teórica y empírica de las exportaciones no tradicionales en Colombia</td>
<td>Fernando Mesa Parra María Isabel Cock Angela Patricia Jiménez</td>
<td>Agosto 1998.</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Una revisión de la literatura teórica y la experiencia Internacional en regulación</td>
<td>Marcela Eslava Mejía Juan Daniel Oviedo</td>
<td>Abril 1999.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Costos de la corrupción en Colombia.</td>
<td>Marta Elena Badel</td>
<td>Mayo 1999</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Relevancia de la dinámica transicional para el crecimiento de largo plazo: Efectos sobre las tasas de interés real, la productividad marginal y la estructura de la producción para los casos de EEUU y Colombia.</td>
<td>Alvaro Zarta</td>
<td>Junio 1999</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>La recesión actual en Colombia: Flujos, Balances y Política anticíclica</td>
<td>Juan Carlos Echeverry</td>
<td>Junio 1999</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Monetary Rules in a Small Open Economy</td>
<td>Jorge E. Restrepo L.</td>
<td>Junio 1999</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Crisis y recuperación de las Finanzas Públicas lecciones de América Latina para el caso colombiano.</td>
<td>Marcela Eslava Mejía</td>
<td>Julio 1999</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Complementariedades Factoriales y Cambio Técnico en la Industria Colombiana.</td>
<td>Gustavo Hernández, Juan Mauricio Ramírez</td>
<td>Julio 1999</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>¿Hay un estancamiento en la oferta de crédito?</td>
<td>Juan Carlos Echeverry, Natalia Salazar</td>
<td>Julio 1999</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>El capital social en Colombia. La medición nacional con el BARCAS Separata N° 1 de 5</td>
<td>John SUDARSKY</td>
<td>Octubre 1999</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>El capital social en Colombia. La medición nacional con el BARCAS Separata N° 2 de 5</td>
<td>John SUDARSKY</td>
<td>Octubre 1999</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>El capital social en Colombia. La medición nacional con el BARCAS Separata N° 3 de 5</td>
<td>John SUDARSKY</td>
<td>Octubre 1999</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>El capital social en Colombia. La medición nacional con el BARCAS Separata N° 4 de 5</td>
<td>John SUDARSKY</td>
<td>Octubre 1999</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>El capital social en Colombia. La medición nacional con el BARCAS Separata N° 5 de 5</td>
<td>John SUDARSKY</td>
<td>Octubre 1999</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>The Liquidity Effect in Colombia</td>
<td>Jorge E. Restrepo</td>
<td>Noviembre 1999</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Upac: Evolución y crisis de un modelo de desarrollo.</td>
<td>Juan Carlos Echeverry, Orlando Gracia, B. Piedad Urdinola</td>
<td>Diciembre 1999</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Confronting fiscal imbalances via intertemporal Economics, politics and justice: the case of Colombia</td>
<td>Juan C Echeverry, Verónica Navas-Ospina</td>
<td>Diciembre 1999</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Los derechos constitucionales de prestación y sus implicaciones económico-políticas. Los casos del derecho a la salud y de los derechos de los reclusos</td>
<td>Luis Carlos Sotelo</td>
<td>Febrero 2000.</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>La reactivación productiva del sector privado colombiano (Documento elaborado para el BID)</td>
<td>Luis Alberto Zuleta</td>
<td>Marzo 2000.</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>La regulación de precios del transporte de carga por carretera en Colombia.</td>
<td>Marcela Eslava Mejía</td>
<td>Abril 2000.</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Incidencia fiscal de los incentivos tributarios</td>
<td>Juan Ricardo Ortega, Gabriel Armando Piraquive, Gustavo Adolfo Hernández, Carolina Soto Losada, Sergio Iván Prada, Juan Mauricio Ramírez</td>
<td>Noviembre 2000.</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Exenciones tributarias: Costo fiscal y análisis de incidencia</td>
<td>Gustavo A. Hernández, Carolina Soto Losada, Sergio Iván Prada, Juan Mauricio Ramírez</td>
<td>Diciembre 2000</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>La contabilidad del crecimiento, las dinámicas transicionales yAlvaro Zarta Avila el largo plazo: Una comparación internacional de 46 países y una presentación de casos de economías tipo: EEUU, Corea del Sur y Colombia.</td>
<td>Alvaro Zarta Avila</td>
<td>Febrero 2001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Análisis de la presupuestación de la inversión de la Nación.</td>
<td>Ulpiano Ayala Oramas</td>
<td>Mayo 2001</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>DNPENSION: Un modelo de simulación para estimar el costo fiscal del sistema pensional colombiano.</td>
<td>Juan Carlos Parra Osorio</td>
<td>Mayo 2001</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>La oferta de combustible de Venezuela en la frontera con Colombia: una aproximación a su cuantificación</td>
<td>Hernando MorenoG.</td>
<td>Junio 2001</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Shocks fiscales y términos de intercambio en el caso colombiano.</td>
<td>Ómer ÖZAK MÜñOZ.</td>
<td>Julio 2001</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Demanda por importaciones en Colombia: Una estimación.</td>
<td>Igor Esteban Zuccardi</td>
<td>Julio 2001</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Elementos para mejorar la adaptabilidad del mercado laboral colombiano.</td>
<td>Mauricio Santa María S. Norberto Rojas Delgadillo</td>
<td>Agosto 2001</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>¿Qué tan poderosas son las aerolíneas colombianas? Estimación de poder de mercado de las rutas colombianas.</td>
<td>Ximena Peña Parga</td>
<td>Agosto 2001</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Elementos para el debate sobre una nueva reforma pensional en Colombia.</td>
<td>Juan Carlos Echeverry Andrés Escobar Arango César Merchán Hernández Gabriel Piraquive Galeano Mauricio Santa María S.</td>
<td>Septiembre 2001</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Agregando votos en un sistema altamente desinstitucionalizado.</td>
<td>Francisco Gutiérrez Sanín</td>
<td>Octubre 2001</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Eficiencia -X en el Sector Bancario Colombiano</td>
<td>Carlos Alberto Castro I</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Determinantes de la calidad de la educación en Colombia.</td>
<td>Alejandro Gaviria Jorge Hugo Barrientos</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Evaluación de la descentralización municipal. Descentralización y macroeconomía</td>
<td>Fabio Sánchez Torres</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Impuestos a las transacciones: Implicaciones sobre el bienestar y el crecimiento.</td>
<td>Rodrigo Suescún</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Strategic Trade Policy and Exchange Rate Uncertainty</td>
<td>Fernando Mesa Parra</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Evaluación de la descentralización municipal en Colombia. Avances y resultados de la descentralización Política en Colombia</td>
<td>Alberto Maldonado C.</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Choques financieros, precios de activos y recesión en Colombia.</td>
<td>Alejandro Badel Flórez</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Evaluación de la descentralización municipal en Colombia. ¿Se consolidó la sostenibilidad fiscal de los municipios colombianos durante los años noventa.</td>
<td>Juan Gonzalo Zapata Olga Lucía Acosta Adriana González</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Evaluación de la descentralización municipal en Colombia. La descentralización en el Sector de Agua potable y Saneamiento básico.</td>
<td>Maria Mercedes Maldonado Gonzalo Vargas Forero</td>
<td>Noviembre 2001</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Evaluación de la descentralización municipal en Colombia. La relación entre corrupción y proceso de descentralización en Colombia.</td>
<td>Edgar González Salas</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Evaluación de la descentralización municipal en Colombia. Estudio general sobre antecedentes, diseño, avances y resultados generales del proceso de descentralización territorial en el Sector Educativo.</td>
<td>Carmen Helena Vergara Mary Simpson</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Evaluación de la descentralización municipal en Colombia. Componente de capacidad institucional.</td>
<td>Edgar González Salas</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Evaluación de la descentralización municipal en Colombia. Evaluación de la descentralización en Salud en Colombia.</td>
<td>Iván Jaramillo Pérez</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>External Trade, Skill, Technology and the recent increase of income inequality in Colombia</td>
<td>Mauricio Santa María S.</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Exposición de Motivos de la Reforma de la Ley 60 de 1993. Sector Educación y Sector Salud</td>
<td>Dirección de Desarrollo Social</td>
<td>Diciembre 2001</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Cualificación laboral y grado de sindicalización</td>
<td>Flavio Jácome Liévano</td>
<td>Enero 2002.</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>La erradicación de las minas antipersonal sembradas en Colombia - Implicaciones y costos-</td>
<td>Yilberto Lahuerta P Ivette María Altamar</td>
<td>Marzo 2002.</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Tendencia, ciclos y distribución del ingreso en Colombia: una crítica al concepto de “modelo de desarrollo”</td>
<td>Juan Carlos Echeveryr G Andrés Escobar Arango Mauricio Santa María S.</td>
<td>Abril 2002.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Viabilidad de los servicios públicos domiciliarios en la ciudad de Santiago de Cali.</td>
<td>Mauricio Santa María Francisco Bernal Carlos David Beltrán David Villalba</td>
<td>Agosto 2002</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Optimal enforcement: Finding the right balance</td>
<td>Jaime Andrés Estrada</td>
<td>Agosto 2002</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Does corporate governance matter for developing countries? An overview of the Mexican case.</td>
<td>Paula Acosta Márquez</td>
<td>Agosto 2002</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>The political business cycle in Colombia on the National and Regional level.</td>
<td>Allan Drazen Marcela Eslava University of Maryland</td>
<td>Enero 2003.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Título</td>
<td>Autores</td>
<td>Fecha</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Construcción de una Matriz de Contabilidad Social Financiera para Colombia.</td>
<td>Gustavo Adolfo Hernández</td>
<td>Mayo 2003</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Elementos para el análisis de Incidencia tributaria.</td>
<td>Andrés Escobar Gustavo Hernández Gabriel Piraquive Juan Mauricio Ramirez</td>
<td>Mayo 2003</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Desempeño económico por tipo de4 firma: Empresas nacionales vs. Grandes y pequeñas receptoras De inversión extranjera.</td>
<td>Erika Bibiana Pedraza</td>
<td>Mayo 2003</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Descentralización y Equidad en América Latina: Enlaces Institucionales y de Política</td>
<td>Eduardo Wiesner</td>
<td>Junio 2003</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Efectos de un acuerdo bilateral de libre comercio con Estados Unidos</td>
<td>Direcciones de Estudios Económicos y de Desarrollo Empresarial del DNP</td>
<td>Julio 2003</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Pobreza, crimen y crecimiento regional en Colombia. (Versión para comentarios)</td>
<td>Ricardo Rocha Hermes Martínez</td>
<td>Agosto 2003</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Sistema de modelos multivariados para la proyección del Producto Interno Bruto</td>
<td>Carlos Alberto Castro I.</td>
<td>Septiembre 2003</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Yet another lagging, coincident and leading index for The Colombian economy.</td>
<td>Carlos Alberto Castro I.</td>
<td>Septiembre 2003</td>
<td></td>
</tr>
</tbody>
</table>